Source code for torch.distributions.binomial

from numbers import Number
import torch
import math
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
from torch.distributions.utils import clamp_probs


[docs]class Binomial(Distribution): r""" Creates a Binomial distribution parameterized by `total_count` and either `probs` or `logits` (but not both). - Requires a single shared `total_count` for all parameters and samples. Example:: >>> m = Binomial(100, torch.tensor([0 , .2, .8, 1])) >>> x = m.sample() 0 22 71 100 [torch.FloatTensor of size 4]] Args: total_count (int): number of Bernoulli trials probs (Tensor): Event probabilities logits (Tensor): Event log-odds """ arg_constraints = {'probs': constraints.unit_interval} has_enumerate_support = True def __init__(self, total_count=1, probs=None, logits=None, validate_args=None): if not isinstance(total_count, Number): raise NotImplementedError('inhomogeneous total_count is not supported') self.total_count = total_count if (probs is None) == (logits is None): raise ValueError("Either `probs` or `logits` must be specified, but not both.") if probs is not None: is_scalar = isinstance(probs, Number) self.probs, = broadcast_all(probs) else: is_scalar = isinstance(logits, Number) self.logits, = broadcast_all(logits) self._param = self.probs if probs is not None else self.logits if is_scalar: batch_shape = torch.Size() else: batch_shape = self._param.size() super(Binomial, self).__init__(batch_shape, validate_args=validate_args) def _new(self, *args, **kwargs): return self._param.new(*args, **kwargs) @constraints.dependent_property def support(self): return constraints.integer_interval(0, self.total_count) @property def mean(self): return self.total_count * self.probs @property def variance(self): return self.total_count * self.probs * (1 - self.probs) @lazy_property
[docs] def logits(self): return probs_to_logits(self.probs, is_binary=True)
@lazy_property
[docs] def probs(self): return logits_to_probs(self.logits, is_binary=True)
@property def param_shape(self): return self._param.size()
[docs] def sample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) + (self.total_count,) with torch.no_grad(): return torch.bernoulli(self.probs.unsqueeze(-1).expand(shape)).sum(dim=-1)
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) log_factorial_n = math.lgamma(self.total_count + 1) log_factorial_k = torch.lgamma(value + 1) log_factorial_nmk = torch.lgamma(self.total_count - value + 1) max_val = (-self.logits).clamp(min=0.0) # Note that: torch.log1p(-self.probs)) = max_val - torch.log1p((self.logits + 2 * max_val).exp())) return (log_factorial_n - log_factorial_k - log_factorial_nmk + value * self.logits + self.total_count * max_val - self.total_count * torch.log1p((self.logits + 2 * max_val).exp()))
[docs] def enumerate_support(self): values = self._new((self.total_count,)) torch.arange(self.total_count, out=values.data) values = values.view((-1,) + (1,) * len(self._batch_shape)) values = values.expand((-1,) + self._batch_shape) return values