Source code for torch.tensor

import torch
import warnings
from . import _tensor_str
from ._utils import _type, _cuda, _range, _rebuild_tensor
import sys


class _TensorBase(object):
    #: bool: True if this is a CUDA tensor
    is_cuda = False
    is_sparse = False

    # NB: This implementation is CPU only; see THPTensor_(new) for the
    # CUDA case, which handles constructing the tensor on the same GPU
    # as this tensor.
    def new(self, *args, **kwargs):
        r"""Constructs a new tensor of the same data type as :attr:`self` tensor.

        Any valid argument combination to the tensor constructor is accepted by
        this method, including sizes, :class:`torch.Storage`, NumPy ndarray,
        Python Sequence, etc. See :ref:`torch.Tensor <tensor-doc>` for more
        details.

        .. note:: For CUDA tensors, this method will create new tensor on the
                  same device as this tensor.
        """
        return self.__class__(*args, **kwargs)

    def type_as(self, tensor):
        r"""Returns this :attr:`self` tensor cast to the type of the given
        tensor.

        This is a no-op if the :attr:`self` tensor is already of the correct
        type. This is equivalent to::

            self.type(tensor.type())

        Params:
            tensor (Tensor): the tensor with the desired type
        """
        return self.type(tensor.type())

    def cpu(self):
        r"""Returns a CPU copy of this tensor if it's not already on the CPU"""
        return self.type(getattr(torch, self.__class__.__name__))

    def double(self):
        r"""Casts this tensor to double type"""
        return self.type(type(self).__module__ + '.DoubleTensor')

    def float(self):
        r"""Casts this tensor to float type"""
        return self.type(type(self).__module__ + '.FloatTensor')

    def half(self):
        r"""Casts this tensor to half-precision float type"""
        return self.type(type(self).__module__ + '.HalfTensor')

    def long(self):
        r"""Casts this tensor to long type"""
        return self.type(type(self).__module__ + '.LongTensor')

    def int(self):
        r"""Casts this tensor to int type"""
        return self.type(type(self).__module__ + '.IntTensor')

    def short(self):
        r"""Casts this tensor to short type"""
        return self.type(type(self).__module__ + '.ShortTensor')

    def char(self):
        r"""Casts this tensor to char type"""
        return self.type(type(self).__module__ + '.CharTensor')

    def byte(self):
        r"""Casts this tensor to byte type"""
        return self.type(type(self).__module__ + '.ByteTensor')

    def is_pinned(self):
        r"""Returns true if this tensor resides in pinned memory"""
        storage = self.storage()
        return storage.is_pinned() if storage else False

    def pin_memory(self):
        r"""Copies the tensor to pinned memory, if it's not already pinned."""
        if self.is_cuda:
            raise TypeError("cannot pin '{0}' only CPU memory can be pinned"
                            .format(self.type()))
        storage = self.contiguous().storage()
        if storage is None:
            storage = (self.storage_type())()
        return type(self)().set_(storage.pin_memory()).view_as(self)

    def share_memory_(self):
        r"""Moves the underlying storage to shared memory.

        This is a no-op if the underlying storage is already in shared memory
        and for CUDA tensors. Tensors in shared memory cannot be resized.
        """
        self.storage().share_memory_()
        return self

    def is_shared(self):
        r"""Checks if tensor is in shared memory.

        This is always ``True`` for CUDA tensors.
        """
        return self.storage().is_shared()

    @property
    def shape(self):
        r"""Alias for .size()

        Returns a torch.Size object, containing the dimensions of the
        :attr:`self` Tensor.
        """
        return self.size()

    def __deepcopy__(self, _memo):
        memo = _memo.setdefault('torch', {})
        if self._cdata in memo:
            return memo[self._cdata]
        new_storage = self.storage().__deepcopy__(_memo)
        new_tensor = self.new()
        new_tensor.set_(new_storage, self.storage_offset(), self.size(), self.stride())
        memo[self._cdata] = new_tensor
        return new_tensor

    def __reduce__(self):
        # NOTE: _rebuild_tensor does not call __setstate__
        args = self.__getstate__()
        return (_rebuild_tensor, args)

    def __getstate__(self):
        return (self.storage(),
                self.storage_offset(),
                tuple(self.size()),
                self.stride())

    def __setstate__(self, state):
        self.set_(*state)

    def __repr__(self):
        return str(self)

    def __str__(self):
        # All strings are unicode in Python 3, while we have to encode unicode
        # strings in Python2. If we can't, let python decide the best
        # characters to replace unicode characters with.
        if sys.version_info > (3,):
            return _tensor_str._str(self)
        else:
            if hasattr(sys.stdout, 'encoding'):
                return _tensor_str._str(self).encode(
                    sys.stdout.encoding or 'UTF-8', 'replace')
            else:
                return _tensor_str._str(self).encode('UTF-8', 'replace')

    def __bool__(self):
        if self.numel() == 0:
            return False
        raise RuntimeError("bool value of non-empty " + torch.typename(self) +
                           " objects is ambiguous")

    __nonzero__ = __bool__

    def __iter__(self):
        if self.nelement() > 0:
            return iter(map(lambda i: self.select(0, i), _range(self.size(0))))
        else:
            return iter([])

    def split(self, split_size, dim=0):
        r"""Splits this tensor into tensor chunks of :attr:`split_size` size.

        See :func:`torch.split`.
        """
        return torch.split(self, split_size, dim)

    def chunk(self, n_chunks, dim=0):
        r"""Splits this tensor into a certain number of tensor chunks.

        See :func:`torch.chunk`.
        """
        return torch.chunk(self, n_chunks, dim)

    def matmul(self, other):
        r"""Matrix product of two tensors.

        See :func:`torch.matmul`."""
        return torch.matmul(self, other)

    def tolist(self):
        r"""Returns a nested list represenation of this tensor."""
        dim = self.dim()
        if dim == 1:
            return [v for v in self]
        elif dim > 0:
            return [subt.tolist() for subt in self]
        return []

    def view_as(self, tensor):
        r"""Returns this tensor viewed as the size as the specified tensor.

        This is equivalent to::

                self.view(tensor.size())
        """
        return self.view(tensor.size())

    def permute(self, *dims):
        r"""Permute the dimensions of this tensor.

        Args:
            *dims (int...): The desired ordering of dimensions

        Example:
            >>> x = torch.randn(2, 3, 5)
            >>> x.size()
            torch.Size([2, 3, 5])
            >>> x.permute(2, 0, 1).size()
            torch.Size([5, 2, 3])
        """
        perm = list(dims)
        tensor = self
        n_dims = tensor.dim()
        assert len(perm) == n_dims, 'Invalid permutation'
        for i, p in enumerate(perm):
            if p != i and p != -1:
                j = i
                while True:
                    assert 0 <= perm[j] and perm[j] < n_dims, 'Invalid permutation'
                    tensor = tensor.transpose(j, perm[j])
                    perm[j], j = -1, perm[j]
                    if perm[j] == i:
                        break
                perm[j] = -1
        return tensor

    def expand_as(self, tensor):
        r"""Expands this tensor to the size of the specified tensor.

        This is equivalent to::

            self.expand(tensor.size())
        """
        return self.expand(tensor.size())

    def repeat(self, *sizes):
        r"""Repeats this tensor along the specified dimensions.

        Unlike :meth:`expand`, this function copies the tensor's data.

        Args:
            *sizes (torch.Size or int...): The number of times to repeat this
                tensor along each dimension

        Example:
            >>> x = torch.Tensor([1, 2, 3])
            >>> x.repeat(4, 2)
             1  2  3  1  2  3
             1  2  3  1  2  3
             1  2  3  1  2  3
             1  2  3  1  2  3
            [torch.FloatTensor of size 4x6]
            >>> x.repeat(4, 2, 1).size()
            torch.Size([4, 2, 3])
        """
        # If args == (torch.Size,), then we need to unpack the tuple
        if len(sizes) == 1 and isinstance(sizes[0], torch.Size):
            sizes = sizes[0]

        repeats = list(sizes)

        if len(repeats) < self.dim():
            raise ValueError('Number of dimensions of repeat dims can not be '
                             'smaller than number of dimensions of tensor')

        # Add new leading dimensions to the tensor if the
        # number of target dimensions is larger than the
        # number of source dimensions.
        num_new_dimensions = len(repeats) - self.dim()
        padded_size = [1] * num_new_dimensions + list(self.size())
        target_size = torch.Size([a * b for a, b in zip(padded_size, repeats)])

        xtensor = self.new().set_(self)
        xtensor = xtensor.expand(padded_size)

        result = self.new()
        result.resize_(target_size)
        urtensor = result.new(result)
        for i in _range(xtensor.dim()):
            urtensor = urtensor.unfold(i, xtensor.size(i), xtensor.size(i))

        urtensor.copy_(xtensor.expand_as(urtensor))

        return result

    def masked_copy_(self, *args, **kwargs):
        warnings.warn("masked_copy_ is deprecated and renamed to masked_scatter_, and will be removed in v0.3")
        return self.masked_scatter_(*args, **kwargs)

    # TODO: add tests for operators
    def __add__(self, other):
        return self.add(other)
    __radd__ = __add__

    def __iadd__(self, other):
        return self.add_(other)

    def __sub__(self, other):
        return self.sub(other)

    def __rsub__(self, other):
        return self.new().resize_as_(self).fill_(other).add_(-1, self)

    def __isub__(self, other):
        return self.sub_(other)

    def __mul__(self, other):
        return self.mul(other)
    __rmul__ = __mul__

    def __imul__(self, other):
        return self.mul_(other)

    def __matmul__(self, other):
        if not torch.is_tensor(other):
            return NotImplemented
        return self.matmul(other)

    def __pow__(self, other):
        return self.pow(other)

    def __rpow__(self, other):
        return torch.pow(other, self)

    def __ipow__(self, other):
        return self.pow_(other)

    def __div__(self, other):
        return self.div(other)
    __truediv__ = __div__

    def __rdiv__(self, other):
        return self.new().resize_as_(self).fill_(other).div_(self)
    __rtruediv__ = __rdiv__

    def __idiv__(self, other):
        return self.div_(other)
    __itruediv__ = __idiv__

    def __mod__(self, other):
        return self.remainder(other)

    def __neg__(self):
        return self.neg()

    def __eq__(self, other):
        return self.eq(other)

    def __ne__(self, other):
        return self.ne(other)

    def __lt__(self, other):
        return self.lt(other)

    def __le__(self, other):
        return self.le(other)

    def __gt__(self, other):
        return self.gt(other)

    def __ge__(self, other):
        return self.ge(other)

    # TODO: add native add or and xor in the libs
    def __invert__(self):
        if type(self).__name__ != 'ByteTensor':
            raise RuntimeError('logical operations are supported on ByteTensors only')
        return (1 - self)

    def __hash__(self):
        return id(self)

    def __int__(self):
        if self.numel() == 1:
            return int(self[(0,) * self.ndimension()])
        raise TypeError("only 1-element tensors can be converted "
                        "to Python scalars")

    def __long__(self):
        if self.numel() == 1:
            return long(self[(0,) * self.ndimension()])
        raise TypeError("only 1-element tensors can be converted "
                        "to Python scalars")

    def __float__(self):
        if self.numel() == 1:
            return float(self[(0,) * self.ndimension()])
        raise TypeError("only 1-element tensors can be converted "
                        "to Python scalars")

    # provide user guidance when they inavertently call autograd properties on a Tensor
    @property
    def data(self):
        raise RuntimeError('cannot call .data on a torch.Tensor: did you intend to use autograd.Variable?')

    # Numpy array interface, to support `numpy.asarray(tensor) -> ndarray`
    def __array__(self, dtype=None):
        if dtype is None:
            return self.cpu().numpy()
        else:
            return self.cpu().numpy().astype(dtype, copy=False)

    # Wrap Numpy array again in a suitable tensor when done, to support e.g.
    # `numpy.sin(tensor) -> tensor` or `numpy.greater(tensor, 0) -> ByteTensor`
    def __array_wrap__(self, array):
        if array.ndim == 0:
            # TODO: remove this when 0-dimensional tensors are supported
            if array.dtype.kind == 'b':
                return bool(array)
            elif array.dtype.kind in ('i', 'u'):
                return int(array)
            elif array.dtype.kind == 'f':
                return float(array)
            elif array.dtype.kind == 'c':
                return complex(array)
            else:
                raise RuntimeError('bad scalar {!r}'.format(array))
        else:
            if array.dtype == bool:
                # Workaround, torch has no built-in bool tensor
                array = array.astype('uint8')

            return torch.from_numpy(array)


_TensorBase.type = _type
_TensorBase.cuda = _cuda