"""torch.multiprocessing is a wrapper around the native :mod:`multiprocessing`module. It registers custom reducers, that use shared memory to provide sharedviews on the same data in different processes. Once the tensor/storage is movedto shared_memory (see :func:`~torch.Tensor.share_memory_`), it will be possibleto send it to other processes without making any copies.The API is 100% compatible with the original module - it's enough to change``import multiprocessing`` to ``import torch.multiprocessing`` to have all thetensors sent through the queues or shared via other mechanisms, moved to sharedmemory.Because of the similarity of APIs we do not document most of this packagecontents, and we recommend referring to very good docs of the original module."""importsysfrom.reductionsimportinit_reductionsimportmultiprocessing__all__=['set_sharing_strategy','get_sharing_strategy','get_all_sharing_strategies']frommultiprocessingimport*__all__+=multiprocessing.__all__ifsys.version_info<(3,3):"""Override basic classes in Python 2.7 and Python 3.3 to use ForkingPickler for serialization. Later versions of Python already use ForkingPickler."""from.queueimportQueue,SimpleQueuefrom.poolimportPoolifsys.platform=='darwin':_sharing_strategy='file_system'_all_sharing_strategies={'file_system'}else:_sharing_strategy='file_descriptor'_all_sharing_strategies={'file_descriptor','file_system'}
[docs]defset_sharing_strategy(new_strategy):"""Sets the strategy for sharing CPU tensors. Arguments: new_strategy (str): Name of the selected strategy. Should be one of the values returned by :func:`get_all_sharing_strategies()`. """global_sharing_strategyassertnew_strategyin_all_sharing_strategies_sharing_strategy=new_strategy
[docs]defget_sharing_strategy():"""Returns the current strategy for sharing CPU tensors."""return_sharing_strategy
[docs]defget_all_sharing_strategies():"""Returns a set of sharing strategies supported on a current system."""return_all_sharing_strategies