Source code for torchvision.datasets.mnist

from __future__ import print_function
import as data
from PIL import Image
import os
import os.path
import errno
import torch
import codecs

[docs]class MNIST(data.Dataset): """`MNIST <>`_ Dataset. Args: root (string): Root directory of dataset where ``processed/`` and ``processed/`` exist. train (bool, optional): If True, creates dataset from ````, otherwise from ````. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ urls = [ '', '', '', '', ] raw_folder = 'raw' processed_folder = 'processed' training_file = '' test_file = '' def __init__(self, root, train=True, transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.train = train # training set or test set if download: if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: self.train_data, self.train_labels = torch.load( os.path.join(root, self.processed_folder, self.training_file)) else: self.test_data, self.test_labels = torch.load(os.path.join(root, self.processed_folder, self.test_file)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ if self.train: img, target = self.train_data[index], self.train_labels[index] else: img, target = self.test_data[index], self.test_labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img.numpy(), mode='L') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): if self.train: return 60000 else: return 10000 def _check_exists(self): return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \ os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file)) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" from six.moves import urllib import gzip if self._check_exists(): return # download files try: os.makedirs(os.path.join(self.root, self.raw_folder)) os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise for url in self.urls: print('Downloading ' + url) data = urllib.request.urlopen(url) filename = url.rpartition('/')[2] file_path = os.path.join(self.root, self.raw_folder, filename) with open(file_path, 'wb') as f: f.write( with open(file_path.replace('.gz', ''), 'wb') as out_f, \ gzip.GzipFile(file_path) as zip_f: out_f.write( os.unlink(file_path) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:, f) with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:, f) print('Done!')
def get_int(b): return int(codecs.encode(b, 'hex'), 16) def parse_byte(b): if isinstance(b, str): return ord(b) return b def read_label_file(path): with open(path, 'rb') as f: data = assert get_int(data[:4]) == 2049 length = get_int(data[4:8]) labels = [parse_byte(b) for b in data[8:]] assert len(labels) == length return torch.LongTensor(labels) def read_image_file(path): with open(path, 'rb') as f: data = assert get_int(data[:4]) == 2051 length = get_int(data[4:8]) num_rows = get_int(data[8:12]) num_cols = get_int(data[12:16]) images = [] idx = 16 for l in range(length): img = [] images.append(img) for r in range(num_rows): row = [] img.append(row) for c in range(num_cols): row.append(parse_byte(data[idx])) idx += 1 assert len(images) == length return torch.ByteTensor(images).view(-1, 28, 28)